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1 Introduction

Note, this document is under development. Please look back for updated versions.

In this document is presented a brief theory (formulas only) for the elastic and chaotic pendulums in two
dimensions and some 4th order Runge-Kutta methods with first and second order time derivatives.

The Runge-Kutta methods are given only for the z-coordinate. But the same formulas can be applied to
the y-coordinate and z-coordinate (if present) as well.



The elastic pendulum in two dimensions
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The chaotic pendulum in two dimensions
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4 Runge-Kutta 4th order methods

4.1 First order time derivatives
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4.2 Second order time derivatives
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